Int. J. Soiids Structures Vol. 29, No. 4, pp. 421436, 1992 0020-7683.92 $5.00+ .00
Pninted in Great Britan. Pergamon Press pic

PENETRATION OF LAMINATED KEVLAR BY
PROJECTILES—II. ANALYTICAL MODEL

Guoqi Zuu,t WERNER GoLDSMITH and C. K. H. DHARAN
Department of Mechanical Engineering, University of California,
Berkeley, CA 94720, U.S.A.

(Received 18 January 1991 : in revised form 11 June 1991)

Abstract—An analytical representation of the normal impact and perforation of conically-tipped
hard-steel cylinders with an aspect ratio of three on laminated Kevlar 29/polyester targets was
developed to accompany corresponding text information. The global deflection was obtained using
laminated plate theory ; dissipative mechanisms including indentation of the striker tip, bulging at
the surface, fiber failure, delamination and friction were modeled using certain simplifying assump-
tions. The event was divided into three consecutive phases: indentation, perforation and exit.
Resistive forces for each of these mechanisms, valid for both static and dynamic penetration, were
ascertained and, for the latter case, used in conjunction with Newton's law to provide the plate
response and the kinematic history of the projectile. A finite difference scheme was employed to
obtain the numerical resuits.

A comparison of the ballistic limits and of terminal velocities for higher initial speeds obtained
from the model and from tests showed very good agreement. The accord between predicted and
measured displacement histories is satisfactory, but deteriorates successively when velocities and
accelerations are examined. This effect is due to the process of differentiation of data as well as
inaccuracices in the analytical representation. Mcthods for extending the model are suggested.

INTRODUCTION

In a companion paper, Zhu et al. (1991), the results of cxperiments involving the normal
penetration and perforation of Kevlar 29/polyester resin laminates by conically-tipped
cylindrical hard-steel projectiles were presented. The phenomena involved in the dynamic
loading of such plates are complex ; a comprehensive analysis of such an event requires
consideration of a wide variety of processes, including global deformation, local indentation,
bulging, frictional effects and a variety of failure mechanisms. While numerous physical
and numerical models of the penetration and perforation of isotropic materials have been
published, corresponding work involving composite laminates is much more limited.

Failure mechanisms in these materials due to impact by blunt projectiles were described
by Cristescu et al. (1975), while Greszczuk (1975) and Greszczuk and Chao (1977) computed
the stress distribution and damage for such an event. Low velocity impact of spheres on
composites was modeled analytically by Shivakumar er al. (1985a,b) who developed a
physical model using the Tsai-Wu failure criterion, Tsai and Wu (1971), as well as a
maximum stress criterion for damage evaluation. Fiber failure and delamination were
attributed to target bending, but local bulging was not considered. Tan and Sun (1985) and
Sun (1977) studied the same phenomenon using the Whitney-Pagano laminate theory,
Whitney and Pagano (1970), to estimate the global deformation of the laminates and an
empirical indentation law, considered to be the same under both static and dynamic
conditions, to approximate the contact force. Matrix cracking and delamination were
included, but not fiber failure. Computational developments of impact on laminated plates
may be found in Cairns and Lagace (1987), Dobyns (1981) and Reddy (1982).

Delamination has been studied using linear elastic fracture mechanics, Dharan (1978),
Garg (1988) and Wang (1984). The case of an elliptically-shaped delamination under quasi-
static in-plane compression was investigated by Chai (1982), Chai and Babcock (1984) and
Flanagan (1988). Ply separation resulting from low velocity impact by a sphere was analyzed
by Wu and Springer (1988a,b) and by Grady and Sun (1985) who employed both finite
element and experimental techniques.
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This paper is concerned with the construction of a model of the perforation of conically-
tipped projectiles into Kevlar laminates involving speeds at and somewhat above the ballistic
limit. The penetration phenomenon was divided into three successive and non-interactive
stages: (a) indentation, (b) perforation. and (c) exit of the projectile. The predictions of
this model have been compared with data from corresponding experiments for a variety of
impact conditions.

A finite difference program incorporating the global response. local deformation. and
fiber and matrix failure, as well as the motion of the projectile, was developed. The computed
results were compared with corresponding experimental data, Zhu ez al. (1991).

ASSUMPTIONS

The model includes a number of idealizations, such as thin plate behavior, the rigidity
of the projectile, the independence of global and local response of the laminate, the enlarge-
ment of a spherical cap due to indentation until perforation occurs and the maintenance of
a spherical bulge thereafter, fiber deformation in the form of a geodesic around this bulge
or around the indenting cone, and the use of a solid friction representation. Since the
material is considered to be incompressible, the volume of the bulge is equal to that of the
conical penctration. The shape of the delamination is specified as being elliptical which is
found for the case of ditferent fiber densitics in the two orthogonal directions. The location
of the greatest delamination is assumed to occur on the distal side ; propagation s mode [
dominated. The resistance of the damaged composite is included in the form of a parameter
which is the ratio of the number of failed fibers to the total number of unbroken fibers in
front of the contact zone.

Matrix cracking, although observed, was found to be minor and was hence neglected
in the model. Whitney Pagano theory, which is lincarly clastic and limited to small strains,
15 also used here for determining the global deflection. Rate effects are incorporated in the
analysis by using the value of the dynamic rather than a static yield stress in the equations.
The assumed independence of the global and local response of the laminate to dynamic
loading leads to the relation between the displacement of the projectile, w,, as the sum of
the central plate deflection, w, and the relative indentation (or perforation) of the projectile
with respect to the plate, w.

GLOBAL RESPONSE
Whitney -Pagano laminated plate theory, which is an extension of the theory of Yang
et al. (1966), was used in the analysis of the response of composite specimens to impact.
The displacement equations of motion are given by
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where A4, are the components of the extensional stiffness matrix, B, are those of the coupled
extension-bending matrix and D, are the elements of the bending stiffness matrix, with
i.j=1,....6.withcertain terms omitted due to the thin plate hypothesis. The displacements
in the in-plane {x, v) and transverse directions are u, r and w, respectively. and ¥, are the
angular displacements, where m = x, y.z. Superscript 0 refers to the mid-plane of the
laminate, p is the external pressure and k is the Mindlin shear correction factor. Inertial
factors P. R and 7 are defined by

hil

(P.R.D =f p(l 229 d= 2

~H2

where p is the mass density. The appropriate initial and boundary conditions to guarantee
a unique solution of eqns (1) can be determined from the total energy of the system; in
general, five initial and five boundury conditions are required.

LOCAL DAMAGHE MODEL

For the present fayered composite, the local damage mechanisms due to penctration
modceled here are bulging, delamination and fiber deformation and failure ) matrix cracking
was neglected. The analysis is carried out by determining the total resistive foree acting on
the projectile duc to cach of these three processes. This is accomplished by consideration
of the three successive stages of indentation, perforation and exit of the projectile. Inden-
tation is characterized totally by local bulging. The experimentally observed initial fiber
failure duc to the combined effects of global deformation and local damage in plates of 20
plics or fewer, which occurs on the distal side of the target, defines the termination of
indentation and the start of perforation.

Perforation is characterized by fiber failure at the ultimate strain value and by delami-
nation as well as the further growth of the bulge. The plate resistance successively decreases
as the number of ruptured filaments (and hence the damage parameter) increases. The effect
of friction becomes more dominant the greater the embedment of the striker, The initiution
of the exit stage occurs upon emergence of the entire conical tip from the target. At this
instant, the resistive force drops to the value of the friction force ; this force remains constant
during the remaining contact period.

(a) Bulying

A continuum-mechanical analysis of the bulging process is prohibitive ; instead, it is
assumed that the bulge forms a spherical cap in accordance with experimental observation,
as shown in Fig. |. A similar assumption has been employed by Awerbuch and Bodner
(1970) in the investigation of the bulging of a metallic plate penctrated by a blunt projectile.
Conservation of volume is employed in calculating the extent of bulging.

From Fig. | the half chord of the bulge, r,. can be expressed as

ry=w, tan f+htan & &)

where f§ is the half angle of the cone of the projectile, ¢ is the half angle of the sector of a
sphere. and A is the thickness of the laminate. The radius of the sphere, r. is given by
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Fig. 1. Idealized model for global displacement und bulging of a laminated plate penetrated normally
by a sharp-pointed projectile.

r,
r= " 4)

sin &

By cquating the volume of the cone embedded in the composite at any time to the

volumc of the bulge, ¢ can be calculated from

1 %
W, . . ) W, . Lo .
</,’ sin ;) tan- fi— (/ tan fi4tan ;) (I —cos &) (2+cos &) =0, (5)
i !

The shape of the bulge after fiber failure becomes more complicated, since the broken
fibers are free of constraint. [t is assumed that the bulge remuins spherical and that egn (5)
continues to hold.

(b) Delumination

When the projectile enters the target, the material is displaced laterally as well as
downward, producing in-plane compression with 4 highly localized deformation gradient
as well as out-of-planc loading. This results in interlaminar cracking of mixed I and 1l mode
type. The reflection of the pressure wave created by the impact generates a tensile wave,
which produces incipient Mode | defamination, that is extended by the penetration of the
projectile as shown in Fig. 2.

%

Fig. 2. Delamination initiation during penctration of a laminate by a cylindro-conical projectile.
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The maximum delamination is taken to occur on the distal side, a result supported by
experimental observation, so that the propagation of the crack is primarily Mode I. Its
shape is generally modeled as an ellipse with semi-major axes a and b, respectively, in linear
elastic fracture mechanics [i.e. Chai and Babcock (1984)]. This is the starting point in the
present analysis even though the actual configuration is more complex due to the variations
in stiffness between the weave directions. Furthermore, the weave in the orthogonal direc-
tions is identical ; thus. the energy release rates in these directions, G, (along direction a)
and G, (along b) should be identical and the initial delamination circular. a condition for
which the final results are computed. The relevant equations are obtained by specialization
of the elliptical case, for which the energy release rate G, can be expressed as, Chai and
Babcock (1984).

, adb
" bda
adh
1+ 5(7‘;

Gi+G

Gi = (6

Here, G and G are the energy release rates along the a and b axes, respectively, given by

e R
“Gi= 70 aa (7)
-1 U
+h —
Gi na Ch (76)

where U is the plate strain energy. The deflection of a circular, isotropic plate, w, at a
position of radius r duc to a concentrated central force is given by, Timoshenko (1959),

D

r r F . o
(R a ¢ S l { PR — [{ e
w=Ff §nD, og 5+ l61rD,,( r) 8

where P is the concentrated load, R is the radius of the clamped plate and D, is the flexural
stiffness. Based on this result, for elliptical delumination, the form of the deflection of the
subluminate is assumed as

2 2 2 2 2 2
X ¥ Xy X Y
W= W(,<| - ;P« - ES)'{' Wo ((? -+ p)]n <‘7 + p) 9)

where g is the deflection at the center of the sublaminate and x and y are the coordinates
along directions « and b, respectively. Employing Von Karman strain-displacement
relations, strain ¢ and curvature k are expressed as

o Liow\ 1 fow\ 1{ow dw
C=(’~.u‘n--'/,n»)=2' i) 2 b‘; "5 _5_\:@ (10a)

Ow w 0w )

k] - 35 .
ox*’ o oxtt éxay

K= ("-.w"‘)w er) = (—' (lOb)

where subscripts denote the component directions. G¥ and G? can be obtained after U is
computed.
The strain energy of the plate is represented by
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U= JJ (' de+ 2x'Be+ k' Dx) dx dy (1o

9 =

where A, B and D are the extensional. coupling and flexural stiffness matrices. respectively.
for the sublaminate which can be calculated from the deflection presented in eqn (9).

In the following analysis, the lay-up of the sublaminate is symmetric as is the case here.
By substituting eqn (9) into eqn (10). the strain energy is given by

2awdab[64,, 641 Age+24, . [6D1 6Dy Do +2D,;
= = S, = £t h Y ) » Tt - ’
81 [a‘ ARy SR R R S

(12)

Therefore. G* and G can be expressed as

G = 1 (“'LI_Z“';: ISA” 6,4:: Af.f.-i-le”
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The critical energy release rate G, controls the growth of the delamination. The
propagation will stop when G drops below G, Since both G* and G* are decreasing with
the growth of the delamination, crack propagation will eventuadly stop unless the central
deflection wy, approaches infinity. The penctration of composite laminates by shurp pro-
jectiles usually leaves a localized delamination region, since the sublaminate cannot deform
very much before it is perforated.

Using the principle of Castigliano, the torce of the sublaminate to resist penetration
can be written as

(o Yo. 20)

Fig. 3. A geodesic duc to fiber deformation around the surface of a sphere.
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When the maximum resistance of the sublaminate is known, w, can be calculated from eqn

(14).

In the present case of a circular delamination, the energy release rate reduces to

2
G, = ‘Hl[18A“—6A1~+A(,6+2A|z]+,,[ISD”—6D“+D(,6+ZD,3]. (15)

Similarly, eqn (14) can be expressed as

P= Ziln0[6A“+6A»«+A66+7Au]+77r (6D +6D,,+ Dy +2D,:). (16)

The maximum delamination can be calculated by substituting the critical energy release
rate and the maximum resistance of the sublaminate into eqns (15) and (16). The maximum
delamination and the maximum deflection of the sublaminate relative to the plate can be
determined from these relations. From the static penetration of a single layer laminate and
the fracture toughness test, Zhu et af. (1991), the maximum resistance is 756 N, and the
fracture toughness is about 450 J m ™2 The latter has been found to be only slightly
dependent on strain rate, Saghizadh and Dharan (1986). By substituting these values into
the above cquations, the maximum delamination is obtained as 19.5 mm which is about
three times the radius of the projectile. This is in agreement with the measured cruck length,

(c) Fiber deformation

The extension of the fibers in front of the projectile results from both local and global
target deformation ; the corresponding strain is equal to the sum of the strains duc to these
two effects. The strain due to global deformation can be calculated from the strain-
displacement relations of lincar elasticity when the displacement field of the laminate is
known. However, the local deformation of the fibers depends on their position. The strands
not in contact with the cone are deformed due to bulging, while the fibers in contact are
deformed around the indenter, When calculating the local fiber deformation, it is assumed
that the composite is already delaminated. Thus, the fibers are not subjected to interluminar
constraint and form geodesic curves either on the surfaces of the indenter or on the spherical
bulge, depending on their original locations and the instantaneous position of the penetrator
tip.

For fiber deformation due to bulging, consider a fiber initially in the x-y plane which
starts at point (X, 0) and is deformed to terminate at point (x,, — y,.0) as shown in Fig.
3, with an initial length of 2y,. The geodesic on the surface of the sphere is a portion of a
great circle. Therefore, the length of the deformed fiber is given by

I=2ry (17

where y is the half angle of the sector of the great circle, and r, is the radius of the sphere.
The angle y is given by

y=sin"[ﬁsiné] (18)

where ¢ is the half cone angle of the bulge. The strain in the fiber is
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Fig. 4. A geodesic due to fiber deformation around the surfuce of a cone. (u) Coordinate system
and location of fiber segment ADB on the surfuce of a cone; (b) Top view of conical section;
{c) Developed cone surface.

g =2 Ty (19)

The ends of a fiber initially of length 2y, in contact with the cone are (xq, ¥o,2,) and
(Xe, —¥o. Za), as shown in Fig. 4a. The equation of a cone surface in a coordinate frame
whose origin s at its tip is

X 4+ = (ztan f)? (20)

where # is the half cone angle of the projectile.

The geodesic is a straight line in the developed surface of the cone. In order to calculate
the length of the deformed fiber, the length of arc A8 in plane ACB in Fig. 4b must be
calculated. The half angle of ACB, 2, is given by

. ‘0
Sin o = -t — 21
sptan 8 20

Therefore,



Penetration of laminated Kevlar by projectiles—II 429

arc AB = (22, tan fa. 22

Arc AB forms part of a circle in the developed surface of the cone (Fig. 4¢) ; length
ADB is the length of the geodesic. The half angle 8 of the sector developed from the cone
surface is

AB
§=——=asin§. 23)
204 g (
The length ADB can then be obtained from
ADB = 2o sin @ (24
"~ cos B -

and the local strain in the fiber is

bt . . . y
5—0*3}}; sin [sm B arcsin (Zme t;n ﬁ):l -V
g = . (25
Yo

The total strain in the fiber is
& = £+ (26)

where &, and & represent the strains duc to the global and local deformation, respectively.
The maximum strain criterion is employed to determine fiber failure.

RESISTANCE TO PENETRATION

The force acting on the projectile is now calculated for the three stages of its motion.

(a) Indenmtation

The effects of the boundaries during indentation are neglected, a hypothesis which
ignores the concurrent phenomena produced on the distal side. However, this representation
is acceptable if the depth of the indentation is small relative to the plate thickness. For
isotropic plates, it has been proposed that penetration is resisted by a uniform pressure p,,
which, for a conical indenter provides the expression for the resistive force as, Tabor (1951),

F=p,A, = pynw} tan’ g (27)

where p,, is the mean pressure, A4, is the projected contact area, and w, is the indentation.
It was also shown that the mean pressure was proportional to the yield stress o, of the
material, i.¢.

Pm = €0y (28)

This model is applied to the composite laminate, The mean pressure is obtained from static
indentation experiments, Zhu et al. (1991). However, the direct extension of eqns (27) and
(28) to the dynamic case neglects the strain rate effect. A simple way to take this effect into
account for the present targets is to change the yield stress to a dynamic value using drop
tests or Hopkinson-bar experiments, Zhu er al. (1991).

The indentation stage is terminated when fiber failure first occurs on the distal side of
the target.
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(b)Y Perforation

In this phase, further penetration increases the contact area and hence the resistance
of the laminate. while. on the other hand, successive fiber failure reduces this resistance. A
factor is introduced to approximate the effect of the material damage on the resistunce,
although this force cannot be specified directly. It was shown. Zhu ez @l. (1991). that fiber
failure dominates the resistance of composites. Therefore, a damage factor. d,,. is chosen
as

d, = — (29

where .V, is the number of broken fibers, and N, is the total number of unbroken fibers in
front of the contact region. This factor is a function of time or indentation. The buasic
concept for this approach implies that the reduction in resistance is proportional to the
number of failed fibers no matter where they are located. The resistance is expressed as

V,
F= pm"{p(l —[[m) = pmAp<l - 1>3> (30)

where A, 1s the projected contact area between the laminate and the projectiie. The number
of broken fibers can be calculated from the proposed model of fiber deformation.

(¢) Lxit of the projectile

In the exit stage, friction is the only resistance to further motion of the projectile. Duc
to lack of informution about dynamic friction, the average value obtained from the static
penctration was used in the computation for the striker perforation. The exit stage starts
when

F=1Fr RIS

where £ s the friction force measured during the static tests. This stage terminates when
the projectile shank has completely separated from the target or when its velocity becomes
710,

RESULTS AND DISCUSSION

The relations describing the motion of the projectile during the three phases of the
perforation process of a clumped plate were solved numerically for a 0,90 lay-up using a
central finite difference scheme and subsequent smoothing by means of a spline fit, Zhu
(1990). While the plate was circular, the influence of the boundary on the local deformation
and damage is minimal, and hence each laminate was taken here to be clamped ona square
boundary to simplify the computations. Symmetry of the system required the evaluation
of the response for only one quarter of the plate. The target was initially quicscent and
undeformed, and its middle surface was coincident with the x-p coordinate plane. The
relevant system parameters required for this calculation are presented in Table 1.

Table . Computational parameters

In-plane tensile clastic modulus of laminate 6.9 GPa

In-plane Poisson's ratio 0.25

[n-plane shear modulus 648 MPa
Out-of-plane shear modulus 338 MPa
Laminate density 1.230 kgm !
Mucan pressure of indentation P, 261 MPa
Friction force F, 1.068 N
Bullet mass 289 ¢

Bullet diameter 12.7 mm
Bullet length 38.1 mm

Tip cone angle 60’
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Fig. 5. Computed kinematic history of'a 12.7 mm projectile with a 60” conical tip during penctration
of a 10-ply Kevlar/polyester laminate at an initial velocity of 116 m s™'. (1) Displacement;
(b) Velocity ; (¢) Deceleration,

Figures S and 6 portray the computed kinematic history of the 60° cylindro-conical
projectile perforating a 10-ply laminate at initial velocities of 116 m s~ (ballistic limit) and
200 m s~ ', respectively. The peak deceleration is the sume, 35 x 10* m s~ 2, for these cases,
but the duration for initial perforation is reduced from about 350 to 90 us. The deceleration
is maintained at a constant valuc corresponding to the friction force after the primary
deceleration pulse has ended ; it drops to zero upon complete separation of projectile and
target. The oscillations in this pulsc are due to successive fiber failures.

The effect of strain rate on the complex failure modalities cannot be ascertained
exactly; limited quantitative information concerning through-thickness behavior is
described by Zhu er al. (1991). A computation of the effect of strain rate on terminal
velocity for 10-ply targets, obtained by increasing the static yield stress, and hence mean
pressure, by 10% is shown in Fig. 7. A value of 6.9 MPa for the tensile Young's modulus
was generally used in the computations ; the effect of its variation on the terminal projectile
velocity is shown in Fig. 8. The deviation due to each of these permutations is a maximum
of 10% at the ballistic limit and substantially less with increasing velocity. Computations
investigating the effect of lay-up on the terminal velocity showed negligible difference
between 0/90 and 0/90/ +£45 laminates.
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The computed results for the ballistic limit of targets of various thicknesses are com-
pared with data from experiments in Table 2 and Fig. 9. and very good agreement is noted
in view of the complexity of the model. Corresponding information above the ballistic limit
of 10-ply plates is presented in Fig. 10. The final projectile velocitics for the laminates are
somewhat overpredicted. One reason for the discrepancy may be the assumption involved
in the description of the bulging process. Since an appropriate phenomenological model of
this deformation cannot be obtained, a spherical shupe was specified on the basis of
observation. Such a configuration results in a state of uniform strain, and a discontinuity
in strain was then required between the bulge and the exterior region. This condition
resulted in early first fiber breakage, since fiber deformation along a spherical surface
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Fig. 9. Compurison of the ballistic limits for Keviar/polyester laminates perforated by 12.7 mm
diameter 60° cylindro-conical projectiles.
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Fig. 10. Comparison of the terminal velocities for 10-ply Kevlar/polyester laminates perforated by
12.7 mm 60° cylindro-conical projectiles.
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Table 2. Theoretical prediction of ballistic hmits for Kevlar polvester
laminates

Thickness of Experimental Theoretical
laminates (mm) Number of plies results s "1 prediction (ms 1)

3125 5 75 84
6.35 10 109 ti6
9.525 ] {432 {45
12.7 20 170 170

produces a greater strain than when extended transversely by a sharp tip to the same
deflection. Initial fiber failure was observed to occur on the distal side of the target in static
tests and this situation is presumed to apply in the dynamic case as well.

The first fiber failure is the result of global deflection of the laminate and bulging. The
maximum strain to failure of a Kevlar fiber is 4%, Lubin (1982). From the computation
for a 10-ply laminate penetrated by a projectile at the ballistic limit, the strain due to the
global deformation is about 1.9%. and the strain from bulging is 2.1%. This indicates that
local and global deformation are of equal importance for cylindro-conical projectiles when
the initial velocity of the striker is near the ballistic imit and that the corresponding strains
are not negligible.

A comparison of the calculated and measured displacement, velocity and deccleration
for a projectile with an initial velocity of 124 m's ! penetrating a 10-ply target is presented
in Fig. 11, The experimental values of the velocity and aceeleration are obtained by

{a)
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E
E 20 theorgtical
=
S s v
g
g exparimental
g s
o
0
0 50 100 150 200
Time (ps)
o) 150
theoretical
- ,‘,
E 100
=
2
& so 1\
o
> experimental
Q
] 50 100 150 200
Time {us)
&
% 600000 -
?:’ l expenmeantal 15000
=
= —_
S 400000 z
2 10000 o
K 2
¥ 200000 £
g 5000
[a]
o theoraticat s
o] 50 100 150 200

Time (us)
Fig. 1. Comparison of the calculated and measured kinematic histories of a 12.7 mm 60 cyhndro-
conical projectile during the perforation of a 10-ply Kevlar polyester laminate at an initial velocity
of 124 m s~ '. {a) Displacement : {b) Velocity : (¢} Deceleration.
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successive differentiation of the position data; they exhibit increasing divergence from the
analytical prediction, in part due to the inaccuracies inherent in the differentiation process.
In addition. the raw data from the camera exhibit a certain degree of noise that has to be
eliminated by smoothing. The predictions of the analysis are based on a host of simplifving
assumptions and neglect of certain processes. This includes the use of linear theories, neglect
of wave propagation, a solid friction model and neglect of the effect of this mechanism
during the indentation process, and fiber breakage by the tip of the projectile rather than
excessive elongation. In addition, the bulging model employed should be improved, and
delamination due to bulging and large deformation rather than indentation alone should
be incorporated. The most dramatic step in the improvement of the model is considered
to be the inclusion of the strain rate effect in the indentation and global deformation
description.

Forces are obtained from projectile acceleration histories using Newton's law. In Fig.
11. the peak experimental dynamic force value is 15 kN, compared with 13 kN obtained
for similur quasi-static perforation. The corresponding model prediction is 10 kN, and the
peak force here occurs substantially later than for the corresponding test results. These
discrepancies may be improved by inclusion of the strain rate effect in a general theory of
the process.

The peak deceleration detected by the OPTFOLLOW occurs at about 50 us and the
corresponding displacement is 6 mm. Thus, the mean pressure during dynamic indentation
is 400 MPa. if the deflection of the plate is omitted, i.e. if wy is taken as zero. This value is
1.5 times the value of 261 MPa, the pressure in the quasistatic case, The length of the
projectile tip is 11 mm and the thickness of the plate is 6.35 mm. Therefore, the maximum
resistance of the laminate is reached before the projectile perforates the target.

The results also show that the tip of the projectilc touched the distal surface of the
target when the first fiber failed. If this was used as a criterion for the termination of
the indentation stage, the maximum resistive foree of the laminate from computation would
be in better agreement with the experimental data.

SUMMARY AND CONCLUSIONS

A phenomenological model of the normal impact on laminated Kevlar/polyester plates
ol hard-steel ¢cylindro-conical projectiles has been developed involving three successive
stages of penetration : indentation, perforation and exit. The analysis comprised both global
and locul deformation, the former employing lincarly elastic laminated plate theory, while
the latter consisted of the indenting of the striker, bulging at the distal surface, fiber failure
and delamination. Friction, neglected in the first two stages, was the only force acting
during the exit phase. Resistance to the impingement of the striker was obtained from
these dissipative mechanisms and used in conjunction with Newton's law to determine the
response of the system.

A finite-difference computer program was developed to implement the computations
using material propertics cither measured during the investigation or obtained from the
literature. The results were compared with experimental data acquired in a parallel study.

It is concluded that the model provides a reasonable representation of the deformation
and dissipative processes during penetration by a sharp-tipped rigid cylinder of relatively
small aspect ratio. This is supported by the excellent accord between predictions and data
for the ballistic limit of these plates, and for terminal velocities above this range. An increase
in the constant value of the indentation pressure by 10%, presumed to simulate a strain-
rate cffect. resulted in a significant difference of the terminal velocity only in the vicinity of
the hallistic limit, as was also the case for a change of 20% in the value of Young’s modulus,
used in the determination of the global deformation. Better agreement of the results of the
model with test data is expected if bulging can be described analytically rather than by
hypothesis and if a viscous representation for the target were to be employed throughout.
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